
.

N89-16360
A small evaluation suite

for Ada compilers

Randy Wilke, Daniel Roy

1 INTRODUCTION

After completing a small Ada pilot project (OCC simulator) for the
Multi Satellite Operations Control Center (MSOCC) at Goddard last
year, we recommended the use of Ada to develop OCCs.

To help MSOCC transition toward Ada, we recently developed a suite of
about 100 evaluation programs which can be used to assess Ada
compilers, namely:

o Compare the overall quality of the compilation system (e.g.,
ease of use, complexity, impact on the host computer, error
message quality).

o Compare the relative efficiencies of the compilers and the
environments in which they work (e.g., how long does it take
to compile and link a program?).

o Compare the size and execution speed of generated machine
code.

Another goal of the benchmark software was to provide MSOCC system
developers with rough timing estimate for the purpose of predicting
performance of future systems written in Ada.

2 SUITE DESCRIPTION

Two types of benchmarks were created, "statictf and "dynamictt. Static
benchmarks are used to assess the extent to which a compiler helps (or
hinders) the software development effort. Dynamic benchmarks measure
the efficiency of machine code generated by Ada compilers.

The Ada evaluation suite was developed in about 4 man-months on a
Digital Equipment Corporation (DEC) VAX-11/785 using the DEC Ada
Compilation System (V1.0) running under the VMS operating system
(V4.2). The evaluation suite source was then ported from the VAX to a
Data General Corporation (DG) MV/4000 via magnetic tape. The software
was rebuilt on the MV/4000 using the DG Ada Development Environment
(V2.3) running under the AOSIVS (V6.3) operating system.

F.3.3.1

2.1 Static Benchmark Programs

Two general classes of static evaluation programs were generated. The
first set of programs measures the time to compile various Ada
constructs such as:

o A null program to measure the minimum overhead.

o

o A program translated from Reference 2, dealing with stride

A program instantiating INTEGER - IO.

and non-stride array references.

o The DHRYSTONE synthetic benchmark program from Reference 3.

A compilation command procedure automatically measures the compile
time for every program of the benchmark suite.

The second set of static benchmark programs contain deliberately
induced errors in the source code. They are used to subjectively
evaluate how well compiler messages help the programmer identify some
common mistakes such as:

o Incorrect dereferencing of an object in a procedure call.

o Confusing type and subtype declarations.

o Common typos (missing "--" and ";", reference to a misspelled
variable, etc.)

o Forgetting to qualify items from "withed" packages. In this
case, a good message should mention the right package(s).

2.2 Dynamic Benchmark Programs

The dynamic benchmark programs measure the run time overhead
following Ada features:

for the

I - Control structures (CASE, IF-THEN-ELSE, LOOP).

-
- Procedure call overhead (including calling another language

Assignment statements including ACCESS types.
,

from Ada).

1 - Dynamic memory allocation.

F.3.3.2

- Sequential IO.

- Rendezvous (inter-task communication) and task activation.

- Using multi-tasking to overlap IO with CPU intensive
processing.

- Array referencing (stride and non-stride).

The chosen limited set of tests concentrates on the Ada language
features that are vital to MSOCC. However, the benchmark methodology
and the benchmark code structure provide a good framework to easily
create new benchmarks as the need arises.

An averaging technique is used to smooth the effects of random system
events that can be minimized but not eliminated from the
multi-programming environment. A llnullll loop is timed for several
iterations to compute the overhead for the loop. The ADA construct to
be benchmarked is then timed inside the same loop. The null loop time
is subtracted from the time of the loop containing the Ada construct,
and the result is divided by the number of iterations to produce the
time for one execution of the ADA construct. All timing is performed
using the CALENDAR.CLOCK routine.

A command procedure automatically logs all sysgen parameters as well
as the main process parameters (quotas, working set, etc.) before
running all tests with a programmable number of iterations. Timing
results are computed internally by every benchmark program and logged
in individual files (one such file per test).

2.2.1 Parallelism Test Programs Description

The programs that test the overlapping of input, output and CPU
processing with tasking warrant a more detailed discussion:

2.2.1.1 PAR BIG -
This program instantiates the SEQUENTIAL IO package for a file of big
record size (10 000 bytes per block) aEd reads, processes and writes
several records , overlapping sequential access input , CPU intensive
"processingll and sequential access output by using Ada tasking with
rendezvous. The overall run time should be compared to the overall
run time for SER - BIG described below.

If the compiler correctly implements the Ada tasking paradigm, the
processing task should be able to run while the I/O tasks are blocked.
Therefore, PAR BIG should run faster than SER BIG provided that the
rendezvous overhead is acceptable.

-

F . 3 . 3 . 3

2.2.1.2 SER - BIG

This program instantiates the SEQUENTIAL IO package for a file of big
record size (10 000 bytes per block) 70 serialize sequential access
input, CPU intensive "processing" and sequential access output in a
loop.

2.2.1.3

The same principles were applied to a file of nascom blocks (600
bytes). However, because modern operating systems very efficiently
buffer the data during sequential IO operations, the efficiency
advantage of tasking may be small (or non existent) for this test.

PAR - NB And SER - NB

2.3 Code Optimization Issues

One major concern, when doing simple dynamic benchmarks, is the
compiler optimizer. Host simple benchmark programs do not do any
reasonable work. One must be careful that the optimizer does not
recognize this fact and optimize the construct being benchmarked
completely out of the program. Even if the construct is still
present, there is concern as to whether the optimization would have
taken place in a "real" program to the extent that it took place in
the simple benchmark (e.g., all variables used in the benchmark ending
up in registers may not be realistic).

The DEC Ada Compiler has two optimization switches. One,
/OPTIMIZE=TIME will automatically treat small subroutines as though
the INLINE pragma had been invoked. The other, /OPTIHIZE=SIZE
performs all other optimization but does not do automatic INLINE
processing. The /OPTIHIZE=TIME switch does not result in automatic
INLINE processing if the body of the subroutine being called is
compiled separately.

We tried a method described in Reference 4 to trick the compiler into
not performing automatic INLINE processing. We rejected the method
because it introduced large delays that would have made timing
measurements of small constructs very imprecise.

Ye compiled all dynamic benchmarks with and without optimization.
Where significant differences resulted, the generated machine code was
examined to determine if the optimizer did its job "too well". In
such cases, the non-optimized version was used in test runs.

F. 3.3.4

3 COMPARING DEC ACS AND DG ADE

We were guests on both of the host machines and hence, were assigned
limited resources. Consequently, much effort was spent managing
resources, particularly disk space. On the ADE we were frequently
running at reduced priority, relative to all other system users.

This comparison between the ACS and the ADE is, perhaps, a little
unfair to the ADE. The VAX-11/785, which the ACS runs on, is about
twice as fast as the MV/4000 (1.2 MIPS vs 0.6 MIPS). Also, while DG's
AOSIVS is far superior to many operating systems, we believe that
DEC's VMS, in general, provides a significantly better software
development environment. These bias must be taken into consideration.

4

All static and dynamic benchmarks were developed on the DEC VAX-11/785
and ported to the DG MV/4000. There were no cases where the ADE
failed to compile a program that was successfully compiled the
ACS. was one instance where the ADE generated incorrect code,
and one program experienced runtime problems that were never solved.
Specifically, the following problems were encountered while porting
the benchmark suite:

under
There

- Due to bad code being generated for an explicit type
conversion, PAR - NB had to be recoded.

- PAR - BIG never ran successfully on the MV/4000.
- File IO and parallel processing programs had to be modified

on the the MV/4000 because the ADE does not handle
representation clauses for type trbytetl and generated code for
32 bit integer instead.

- An unhandled exception would randomly occur while using a
program (written in Ada) to unpack records from files that
had been transferred to the DG. The problem would go away by
rerunning the program with exactly the same input file.

The following additional subjective comparisons can be made:

1. Both systems use a lot of resources. The ADE makes
extravagant use of disk space and is also a CPU hog.

2. The MV/4000 text editor (SED) didn't seem as friendly as the
VAX's (EDT). This may have been due to lack of DG experience
on the part of the evaluators (we did not know how to use
SLATE).

As a rule, setting up command files to build and run things frequently
took an order of magnitude longer on the MV/4000.

F.3.3.5

3.1 Static Evaluation

3.1.1 Compilation Times

ACS and ADE compilation times for a subset of the benchmark suite are
compared in Figure F.3.3-1. For the sample, the ACS performed better
even if we allow for the difference in processor speeds. Differences
in the time required to perform disk IO is an additional, hard to
quantify factor.

The entire benchmark suite was compiled and linked in less than 40
minutes on the ACS and in about 3 hours on the ADE.

COMPILE TIME
(seconds)

Benchmark ACS (VAX 11-785) ADE (MV/4000)

COMP NULL
COHP-COMMENTS
COHP-INT IO
COMP-TEXT - - IO

MODUL~ BYTE

SUE CALL-o -
PAR-BIG -

ARRAY REF

RV A R 6 Y 100

6
5
11
7

31
28
20
18
69

24
32
65
20

142
92
94
105
264

Figure F.3.3-1, A Sample of Compilation Times.

3.1.2 Error Messages

Even though the ACS compile time messages were verbose at times, their
relevance and clarity were judged superior to those of the ADE.

In particular, the ACS makes generally good suggestions (adding
missing semicolons, guessing package name for missing qualification,
etc.) whereas the ADE suggested that a derived type was intended when
the problem was a confusion between type and subtype declarations.
This kind of suggestion can greatly confuse the novice programmer.

F.3.3.6

3.2 Dynamic Evaluation

,

Overall, the DEC ACS produced more efficient code than the DG ADE.
The rest of this section compares execution speeds for several classes
of benchmarks.

3.2.1 Common Features

Figure F.3.3-2 shows the measured run time for the most common Ada
constructs.

CONSTRUCT

Control
3 CASES

10 CASES
IF/THEN/ELSE
FOR LOOP (optimized)

Assignments
VARIABLE := VARIABLE
ACCESS VARIABLE := VARIABLE
VARIABLE := CONSTANT

VARIABLE := CONSTANT

VARIABLE := CONSTANT

(CONST < 2**8)

2**8 < CONST < 2**16

(CONST > 2**16)

Synthetic benchmark
DEIRY STONE

ACS/ADE OVERHEAD
(microsec)

average low high

2.611.5 2.6/0.8 2.6/1.9
2.9/1.3 2.9/1.3 2.9/1.6
4.6/1.6 4.4/1.6 4.7/1.6
1.516.0 1.5/6.0 1.7/6.0

0.713.4 0.613.4 0.7/3.5
3.015.4 3.0/5.0 3.2/5.4

0.712.6 0.7/2.6 0.8/2.6

1.1/2.6 1.W2.5 1.3/2.6

1.0/2.9 0.9/2.9 1.1/2.9

1.3/4.6 1.W4.6 1.7/4.6

Figure F.3.3-2, Common Ada construct run time overhead.

F.3.3.7

3.2.2 Procedure Call

Figure F.3.3-3 shows the run time overhead for procedure calls.

NUHBER OF
PARAMETERS

0

1
1
1

PARAMETER ACWADE CALL OVERHEAD
TYPE (microsec/call)

average low high

1 (C calls C) IN
1 (Ada calls C) IN

- 13/31 13/31 13/31

IN 17/37 16/36 17/37
OUT 16/37 16/37 16/37
INOUT 20/40 19/40 20/40

10
10
10

IN
OUT
INOUT

13/NA 13/NA 14/NA
15/NA 15/NA 16/NA

56/89
55/89 ~

86/121

56/89 56/172
55/89 55/90
86/121 86/124

10 element array IN 14/33 14/33 14/34
10 element array OUT 14/34 14/33 14/35
10 element array INOUT 14/34 14/33 14/35

100 element array IN 14/33 14/33 14/33

1000 element array IN 14/34 14/34 14/34

10000 element array IN 14/NA 14/NA 14/NA

Figure F.3.3-3, Procedure Call Overhead.

3.2.3 Hemory Allocation

Figure F.3.3-4 shows the overhead measured for dynamic memory
allocation.

NUHBER OF SIZE OF ACS/ADE ALLOCATION OVERHEAD
BUFFERS BUFFERS (millisec/allocation)

(by t-1 average low high

100
500
1000
1000

1000
lo00
100
500

0.9/5 .O 0.814.0 1.2/5.0
2.9/4.6 3.614.6 2.8/4.6
0.2/1.5 0.2/1.5 0.2/1.5
6.4/4.7 6.514.6 6.2/4.9

Figure F.3.3-4, Dynamic Hemory Allocation.

F.3.3.8

3.2.4 Sequential File I O

Figure F.3.3-5 shows the run time overhead measured for sequential IO.

RECORD SIZE ACS/ADE IO TIMES

(Bytes) (milliseconds/read) (milliseconds/write)

average low high average low high

4 0.6/7 0.6/7 0.617 0.5/5 0.5/5 0.5/5
600 4.0/50 3.0/50 5.0/50 11/120 8.0/120 13/120
10000 120/130 100/130 140/130 340/280 300/280 400/280

Figure F.3.3-5, Sequential IO.

3.2.5 Tasking

Figure F.3.3-6 shows the run time overhead measured for a rendezvous
between 2 tasks.

NUMBER OF
PARAMETERS

PARAMETER ACS/ADE RENDEZVOUS OVERHEAD
TYPE (millisedrendezvous)

average low high

0 - 1.8/11 1.8/11 1.8/12

1
1

IN 1.8/11 1.8/11 1.8/11
ACCESS 1.8/11 1.8/11 1.8/11

10 IN 1.8/12 1.8112 1.9/12

10 element array IN
100 element array IN

1000 element array I N

1.8/11 1.8/11 1.8/11
1.9/12 2.0/12 2.0/12

3.6/12 3.4/12 4.0/13

lk element array INOUT 3.4/13 3.3113 3.6/13

Figure F.3.3-6, Rendezvous Overhead.

F.3.3.9

Figure F.3.3-7 shows the run time overhead measured for
activation.

dynamic task

ACS/ADE TASK ACTIVATION OVERHEAD
(milliseconds/activation)

average low high

6.2114 6.0/14 6.4/14

Figure F.3.3-7, Task Activation Overhead.

Figure F.3.3-8 shows the run time measured for reading, processing and
writing number of 600 bytes (NASCOH) and 10 000 bytes records (BIG
BLOCKS) using tasking (PARALLEL) or not (SEkAL). Refer to the
description of PAR - BIG and SER-BIG given previously for details.

a

PROCESSING ACS/ADE TOTAL EXECUTION TIHE
MODE (seconds)

Two CONTROLLERS:

NASCOH BLOCKS
NASCOH BLOCKS

BIG BLOCKS
BIG BLOCKS

average low high

SERIAL 3.7/NA 3.4/NA 3.9/NA
PARALLEL 4.1/NA 3.9/NA 4.4/NA

SERIAL 6.6/NA 6.4/NA 6.8/NA
PARALLEL 4.5/NA 4.3/NA 4.8/NA

ONE CONTROLLER:

BIG BLOCKS SERIAL 7.5/NA 7.3/NA 7.7/NA
BIG BLOCKS PARALLEL 5.4/NA 5.2/NA 5.6/NA

NASCOH BLOCKS SERIAL NA/14 NA/14 NA/14
NASCOH BLOCKS PARALLEL NA/ 16 NA/16 NA/16

Figure F.3.3-8, Parallel Processing test.

Our results, obtained with the ACS, show that when separate
controllers are used for the input and the output, parallelism is
highest, allowing the PAR BIG multi-tasking program to run than
24% faster that its seriai counterpart.

Excellent buffering by the OS however, makes the serial program for
NASCOH blocks (SER - NB) run 10% faster that its multi-tasking
counterpart.

more

Lack of time and numerous problems with an unfamiliar environment
not allow us to run PAR-BIG on the ADE.

did

F. 3.3.10

3.2.6 An Interesting Math Routine

In Reference 3, it was shown that for two routines accessing an array
in a stride and non-stride manner, the F77 compilers produced
significantly slower code than the VAX FORTRAN and that all of the VMS
Pascal compilers considered generated very inefficient code.

Our results, presented in figure F.3.3-9, show that the VAX Ada code
for this test is not as efficient as the VAX FORTRAN code (execution
time for VAX FORTRAN is about half that for VAX Ada). This result
contradicts our own previous experience (see Reference 1) and the
results of other groups. DEC Ada is often found to be faster than DEC
FORTRAN V4.2 but we observe that DEC FORTRAN V4.3 produces
significantly faster code and that the ACS optimizer can be improved.
We hope that DEC Ada will benefit from the progress made for DEC
FORTRAN.

ACS on VAX 111785 CPU time
(seconds)

50 100 150 200
ITER- ITER- ITER- ITER-
ATIONS ATIONS ATIONS ATIONS
---_-- ------ ------ ------

STRIDING :
VAX FORTRAN (V4.3) 0.3 1.8 6.5 15.9
VAX ADA (V1 .O) 0.4 3.7 13.5 38.0

NON-STRIDING:
VAX FORTRAN (V4.3) 0.3 2.4 8.8 25.0
VAX ADA (V1.0) 0.3 2.8 10.2 26.9

Figure F.3.3-9, Array Reference Benchmark Execution Times.

4 CONCLUSION

In general, the ACS is a reasonable system to work with. The
following positive comments can be made:

- The ACS operates in a logical, easy to comprehend manner.
When assistance is required, documentation on operating the
ACS is complete, accurate, and easy to use. On-line help is
available.

- The LRM is generously supplemented with text and examples
specific to the DEC implementation.

F.3.3.11

- The ACS is well integrated into the DEC software development
and run-time environment. A run-time reference manual
provides practical information about internal details of the
DEC implementation and how Ada interfaces to VHS and other
high-level languages.

- Compilation speed is rapid enough for serious software
development (at least on a VAX-111785).

While ACS disk space requirements (per user library unit) are
high, "garbage" files, necessary to track compilation units,
were fewer than on ADE and were confined to the library
directory, rather than cluttering the user's working
directory.

-

- Run-time error messages were excellent. They were generally
very specific about the true nature of the problem and
provided the W S standard trace back information.

The following negative comments can be made about the ACS:

- The Ada rendezvous mechanism, which will be critical to HSOCC
realtime applications, incurred relatively high overhead.

- The ACS requires large amounts of disk space to maintain a
user library.

- In the single direct comparison between VAX Ada and VAX
FORTRAN (ARRAY REF), our results suggest that in spite of its
overall good quality, the DEC ACS code generator can be
improved.

- While the information contained in compiler error messages
usually identifies the offending line of code and the nature
of the error, the messages themselves tend to be verbose and
poorly worded. Much effort is required to extract the
information from the message.

The following positive comments can be made about the ADE:

1. The ADE feature.s a more extensive set of tools than the ACS
(e.g., a pretty printer).

2. The library manager can produce very useful cross reference
reports.

3. The symbolic debugger is friendly and more mature than
systems' debuggers.

other

F. 3.3.12

4. The ADE features an impressive number of packages (e.g.,
BIT OPS to alleviate the lack of representation clauses,
C-NT EXCEPTION ,to help determine the origin of an
exception) that would help alleviate some of the problems we
mentioned.

5. Overall, the ADE generated less efficient code than the ACS
but in a few cases, when the difference in CPU speed is
accounted for, the ADE generated code of equal or better
quality .

The following negative comments can be made about the ADE:

1. Run-time error messages were terrible. Frequently, system
limits are exceeded during program elaboration. When this
happens, the user is either presented with Wnhandled
exception in library unit prog", or "Constraint error in unit
main", and no additional information.

2. The compiler required a pragma or a compile switch to
explicitly declare a procedure to be the main program. The
concept is not part of the L R M and should not be necessary.

3. Compilation times were very slow, even considering the fact
that the MV/4000 is only a 0.6 MIPS machine.

4. PAR NB contained code which assigned an array to an array
wi tE an explicit type conversion (the arrays were declared as
different types). The DG compiler generated bad code which
caused the program to hard abort directly to the operating
system with no Ada exception raised. PAR - NB was recoded to
avoid the type conversion.

5. PAR - BIG never ran successfully on the MV/4000. An exception
was raised the first time that a read was attempted on its
input file. The reason for the exception was not apparent.
SER BIG did not have any problems reading the file. PAR - BIG
worEed correctly on the VAX.

6. The ADE doesn't support storage of 8-bit integers. It uses
32-bits for all integer variables, ignoring length
representation clauses. In order to compare ADE IO benchmark
results to ACS results, programs were modified on the MV/4000
to ensure that buffers were the same number of bytes.

7. There is no ADE compiler switch to turn off optimization.
Such a switch is frequently necessary when working with
symbolic debuggers and would have been useful in the
benchmarking process.

F. 3.3.13

8.

9.

10.

11.

12.

The user's guide was rather thin and did not provide much
insight into the ADE implementation of the Ada language.

The ADE LRM documentation did not include any ADE specific
description or examples.

Some of the library files that ADE needs to configure
compilation units must reside in the users working directory
rather than in the library directory. Users have a hard
enough time keeping their directories free of their own
"garbage" files without also having to worry about the ADE's.
The names generated for the ADE files have very long and
arcane embedded number sequences, making them unwieldy to
deal with on an individual basis.

The ADE makes extravagant use of disk space.

The W/4000 text editor (SED) didn't seem to us as friendly
as the VU'S (ED"). However, a colleague demonstrated a very
impressive Ada frame driven editor the he built using SLATE'S
macro capability.

Overall, the ADE is usable for investigating the Ada language but many
improvements are needed before it can be used as a production
compiler.

4 .1 For More Information

Two reports, available from the authors, document the suite and the
results of the comparison between DEC's ACS and DG's ADE:

o An - Evaluation -- Suite for - Ada Compilers, Century Computing,
Inc., Revision A, March 1986.

o A Comparison of the DEC Ada Compilation System and the DG Ada
Development Environment, Century Computing, Inc., Revision A,
March 1986.

- ---- ----

The source code for the suite and the RUNOFF source file for the
reports are also available from the authors on a W S BACKUP format
tape.

F. 3.3.14

5 BIBLIOGRAPHY

1.

2.

3.

4.

Evaluation of Ada in the MSOCC Environment, Final Report,
Century Computing, Inc., July 31, 1985.

---- -

--- Where are the Optimizing Compilers?, Wolfe/Macke, SIGPLAN
Notices, V20, #11, November, 1985.

Dhrystone: A Synthetic Systems Programming Benchmark,
Weicker, Comhnications of the ACM, Volume 27, Number 10,
October, 1984.

Evaluating the Performance Efficiency of Ada Compilers,
Bassman et al, Proceedings of the Washington Ada Symposium,
ACH, 1985.

- - -

.........................
Randy Wilke is a senior member of the technical staff at Century
Computing Inc. where he has been working since 1981. He received a
Bachelor of Science in Computer Science from the University of
Southern California in 1976.

Daniel Roy is a senior member of the technical staff at Century
Computing Inc. where he has been working since 1983. He received the
Diplome d'Ingenieur Electronicien (MSEE) from ENSEA in 1973 and the
Diplome d'Etudes Approfondies en Informatique (MSCS) from the
University of Paris VI in 1975.

Authors' current address:
Century Computing, Inc., 1100 West street, Laurel, Hd., 20707.
Tel: (301) 953-3330.

F. 3.3.15

